Next Step Office Hours: Learning MCAT Science

- Welcome to Office Hours!
- Introduction
- What Do I Need for this Session?
- Learning MCAT Science
- Techniques for Biochemistry
- How Can Next Step Help?

Next Step Office Hours: Learning MCAT Science

- Thanks for coming to Next Step Office Hours!
- If you haven't been here before, here's how it works...
- These sessions are meant to be:

Interactive

Problem-focused

Specific to your needs (so ask questions!)

- Today's focus: Learning MCAT Science
- Future sessions: Content review, FL exam review
- This is NOT a lecture! You can benefit most by:

Raising your hand and speaking
Commenting in the Question box
Responding to poll questions

Before Getting Started

- 1. If you have a microphone, make sure it is turned on and easily available.
- 2. Locate the hand-raise button on the toolbar on your screen.
- 3. Locate the Q box on the toolbar.
- 4. Let me know if you're having any technical issues!

Memorizing MCAT Science: Techniques

Mnemonics

 Info that can be represented as a sentence or series of words

Formula sheets

Physics! So! Many! Equations!

Study sheets

• Summary of a single topic

Flowcharts

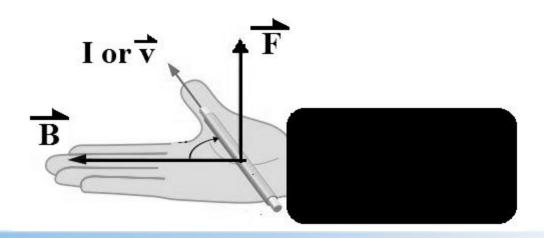
Pathways, logical connections

Unit analysis

Equations!

Flashcards

Disconnected facts (often psych/soc)


Spaced repetition

Literally everything

Visual / kinesthetic learning

Useful for students with visual or physical learning styles

1 H 1.008																	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 GL 35.45	18 At 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn. 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 76.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 St 87.62	39 Y 88.91	40 Zr 91.22	41 Nb. 92.91	42 Mo 95.94	43 J.c (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 \$0. 118.71	51 Sb 121.75	52 Te 127.60	53 126.90	54 Xe 131.29

Mnemonic Devices

Mnemonics

- Good ones are outrageous, naughty, or related to people you know (or all 3!)
- Can be visual, auditory, kinesthetic
- You should create a new mnemonic every other week

Examples:

The classification hierarchy for living things:

King Phillip Comes Over For Good Sex (Kingdom, Phylum, Class, Order, Family, Genus, Species)

The elements that are diatomic gases at standard conditions:

Have No Fear Of Ice Cold Beer $(H_2 N_2 F_2 O_2 I_2 Cl_2 Br_2)$

Or memorize it phonetically

"huh-noff cull-bree": $H_2 N_2 O_2 F_2 Cl_2 Br_2 I_2$

Mnemonic Devices

When to Use:	Method:	Example:
For information involving key words	Acronym - an invented combination of letters with each letter acting as a cue to an idea you need to remember.	FLAT PEG— is an acronym for the anterior pituitary hormones (FSH, LH, ACTH, TSH, Prolactin, Endorphin, GH).
For information involving key words	Acrostic - an invented sentence where the first letter of each word is a cue to an idea you need to remember.	Eat Tender Chicken Chunks Elegantly is an acrostic to remember Proteases in the Duodenum: Enterokinase, Trypsin, Chymotrypsin, Carboxypeptidase and Elastase.
		FOL(d)M(a)PS - Ovarian Cycle: Follicular phase, Ovulatory phase, and Luteal phase. Menstrual Cycle: Menstrual flow, Proliferative phase, and Secretory phase.
		SEVEn UP - Path of Sperm in the Male Reproductive Tract: Seminiferous tubules, Epididymis, Vas deferens, Ejaculatory Duct, n(Nothing), Urethra and Penis.
		LAb RAt – to remember the bicuspid valve of the left atrium and the tricuspid valve of the right atrium. SNoW DRoP – Lab techniques and the material they use. Southern blot,
		DNA; Northern blot, RNA, Western blot, protein

Mnemonic Devices

When to Use:	Method:	Example:			
For remembering information items Loci Method - Imagine placing the items you want to remember in specific locations in a room with which you are familiar.		To remember the path of the blood: The door to your house is the SVC/IVC entry to the right atrium. As you walk through the house, each door will serve as a valve and the room will serve as the next chamber.			
For ordered or unordered lists	Chaining- Create a story where each word or idea you have to remember will cue the next idea you need to recall.	Williamson-ether synthesis: Throw a magic wand and your favorite brand of beer into a wishing well, bring up the bucket to find angel wings			
		Alkyl halide Ether			
		WELL is reminiscent of "WILLiamson", the magic wand is a long alkyl chain with Br-and reminding you it ends in a halide, the beer is the alcohol, and the pair of wings represents the ether product			

How to "Memorize" Equations: Formula Sheets

The MCAT emphasizes integration and testing of relationships. Many times the successful use of a formula or equation will depend on the relationships of the equation, not raw calculation.

 $d = v_i^* t + \frac{1}{2} * a * t^2$ $v_f^2 = v_i^2 + 2 * a * d$

When learning equations, focus on: the **relationship** between the variables and k

Keeping track of units will allow you to derive a needed equation in a pinch.

7	
$\mathbf{v_f} = \mathbf{v_i} + \mathbf{a^*t}$	$d = \frac{\nabla_i + \nabla_f}{2} * t$
$\mathbf{v_i} - \mathbf{v_i} + \mathbf{a} + \mathbf{c}$	$u = \frac{1}{2} - 0$

	Equation	Units	Relationships
Gravitational Force	F = mg	Newtons (kg•m/s²)	proportional
Electrostatic Force	$F = kQq/r^2$	Newtons (kg•m/s²)	proportional , inverse square
Kinetic Energy	$KE = \frac{1}{2} mv^2$	Joules (N•m)	proportional, square
Potential Energy	mgh, kQq/r	Joules (N•m)	proportional, inverse
Mechanical Work	$W = Fdcos\theta$	Joules (N•m)	proportional, inverse (cos)
Translational Motion	The core 4	varies	all of the above

Kinematics, Force and Energy - Recall Exercise

Trig Functions

	sin	cos
0	0	1
30	$\sqrt{1/2}$	√3/2
45	$\sqrt{2/2}$	$\sqrt{2/2}$
60	$\sqrt{3/2}$	$\sqrt{1/2}$
90	1	0
180	0	-1

Kinematics

$$v_f = v_o + at$$
 $d = v_o t + (1/2)at^2$
 $v_f^2 = v_o^2 + 2ad$ $d = [(v_1 + v_2)/2] t$

Projectile Motion

$$v_o sin\vartheta = V(2gh)$$
 $v_o cos\vartheta = constant$
 $v_o sin\vartheta = v_{yi}$ $v_y @ max h = 0 m/s$
 $a_x = 0 m/s^2$ $a_y = -10 m/s^2$

Force

$$F = ma$$
 $F_g = GMm / r^2$

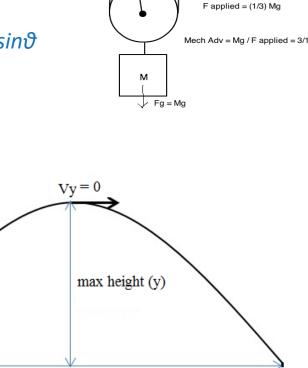
Mechanical Advantage: F_{out} / F_{in}

 $KE = (1/2) \text{ mv}^2$ P = Work/time

 $Work_{net} = \Delta KE$ $E_{spring} = (1/2)kx^2$

 $v(y) = v \sin \theta$

TE = KE + PE


Efficiency: W_{out} / W_{in}

$$F_{spring} = -k\Delta x$$

$$F_f = \mu F_N \quad \tau = rFsin\vartheta$$

 $v(x) = v\cos\theta$

Energy

Distance (x)

F applied

 $PE_a = mgh$

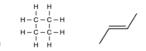
 $\Delta TE = \Delta KE + \Delta PE$

 $Work = Fdcos \vartheta$

Isomer Flowchart

Isomers

Turn Dry information into something active.


Make this isomer list into a decision tree, similar to how a physician might make a differential diagnosis.

Isomers: molecules with the same molecular formula but a different arrangement of atoms.

Divided into: Constitutional isomers vs. Stereoisomers

Different connections between the atoms:

Constitutional isomers e.g. cyclobutane, butene are both C₄H₈

Same connections between the atoms:

Stereoisomers - divided into: configurational and conformational

Freely interconvert w/o breaking bonds:

Conformational isomers e.g. chair, boat cyclohexane

Requires bond breaking to interconvert:

Configurational isomers - divided into: enantiomers and diastereomers

Non-superimposable mirror images:

Enantiomers e.g. R and S 2-hydroxypropanoic acid

Not mirror images:

Diastereomers - comes in several different types:

Only one stereo center has been flipped:

Geometric Isomers

Vary around double bond (E/Z, cis/trans):

Epimers

Sugars that only vary at one stereocenter e.g. Glucose and Galactose

Anomers

An epimer based on a cyclic sugar

Mutarotation: conversion between α and β anomers

For example:

1) Do the molecules have the same molecular formula?

Yes? They are isomers.

2) Do the molecules have the same atomic connections and functional groups?

No? They are constitutional isomers.

Yes? Can we rotate one molecule to match the other?

And so on....

Study Sheets: VSEPR and Molecular Shape

of bonding groups	# of lone pair electrons
2	0
3	0
2	1
4	0
3	1
2	2
5	0
2	3
6	0
4	2

Electronic Geometry	Molecular Geometry
linear	<u>linear</u>
trigonal planar	<u>trigonal</u> <u>planar</u>
trigonal planar	<u>bent</u>
tetrahedral	<u>tetrahedral</u>
tetrahedral	<u>trigonal</u> pyramidal
tetrahedral	<u>bent</u>
trigonal bipyramidal	<u>trigonal</u> <u>bipyramidal</u>
trigonal bipyramidal	<u>linear</u>
octahedral	<u>octahedral</u>
octahedral	<u>square planar</u>

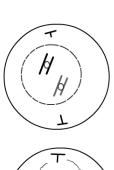
Bond Angle
180
120
< 120
109.5
107
104.5
), 120, 180
180
90, 180
90, 180

VSEPR Geometries					
Steric No.	Basic Geometry 0 Ione pair	1 Ione pair	2 Ione pairs	3 Ione pairs	4 lone pairs
2	X—E—X				
3	X 120° X Trigonal Planar	E X < 120° Bent or Angular			
4	X X///////////////////////////////////	X///E X < 109° Trigonal Pyramid	X X × 109° Bent or Angular		
5	X 120° E X X Trigonal Bipyramid	< 90° X X///// < 120° E X Sawhorse or Seesaw	X 90° EX X T-shape	X 180°	
6	X 90° X////// X E X X Octahedral	Square Pyramid	90° Entitl X X X X X X X X	X X X X < 90° T-shape	X 180° X X X Linear

This type of information lends itself well to active learning via _

Study Sheets

Mitosis vs. Meiosis

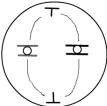

Mitosis vs. Meiosis

The test makers love contrasts!

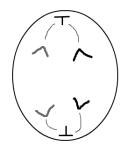
We should to, as it allows us to learn 2 pieces of information fro the price of 1.

Important differences are between mitosis and meiosis I.

Meiosis II is almost an exact copy of mitosis, just with half the starting nuclear material.

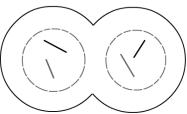


Before mitosis:

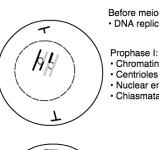

· DNA replicates during S phase

Prophase:

- Chromatin condenses into chromosomes
- · Centrioles form and spindle fibers form
- Nuclear envelope breaks down

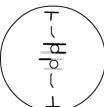


- · Chromosomes line up on metaphase plate
- · Centrioles are attached to spindle fibers

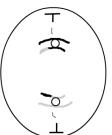


Anaphase:

- · Centromeres split
- · Sister chromatids are pulled apart

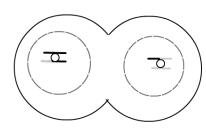


- · Cell membrane pinches in half
- · Nuclear envelopes reform
- 2 identical daughters produced



Before meiosis:

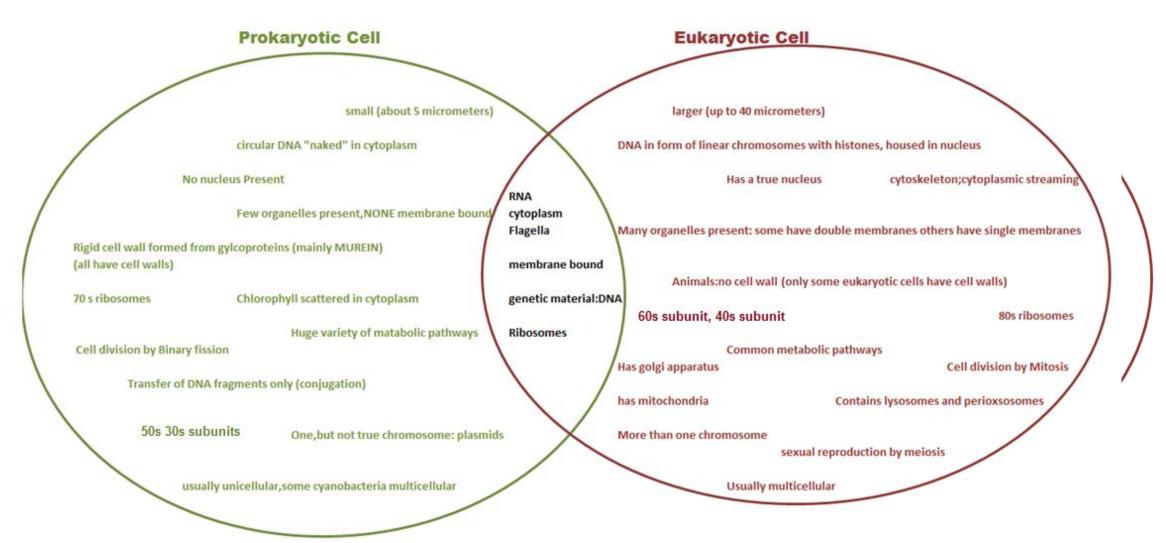
- DNA replicates during S phase
- · Chromatin condenses into chromosomes Centrioles form and spindle fibers form
- · Nuclear envelope breaks down
- · Chiasmata form tetrads and crossing over



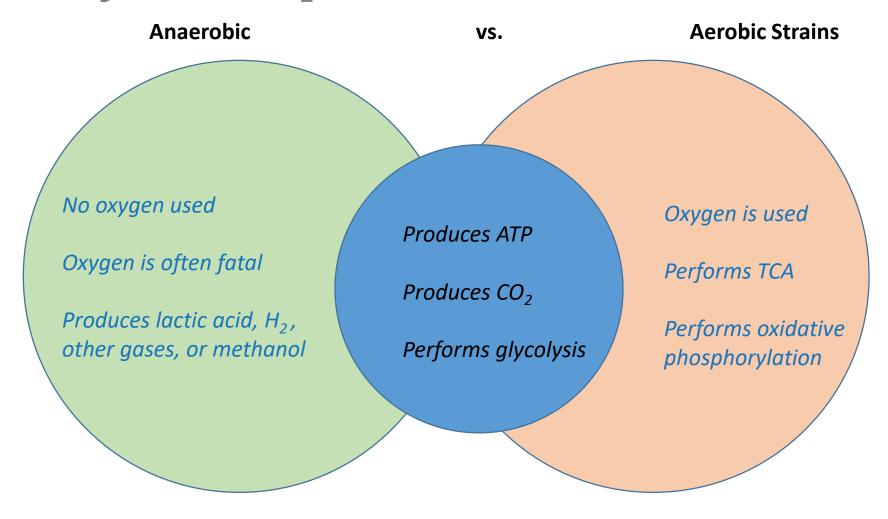
- · Chromosomes pairs line up on metaphase plate
- · Centrioles are attached to spindle fibers

Anaphase I:

· Homologous pairs are pulled apart



- Cell membrane pinches in half
- · Nuclear envelopes reform
- · 2 haploid daughters produced


Prokaryotic Reproduction and Growth

Contrast with Eukaryotic Cells

Prokaryotic Reproduction and Growth

Transcription

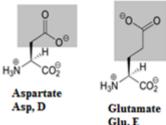
Eukaryotes

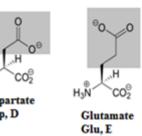
Prokaryotes

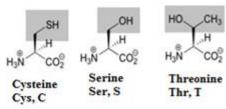
Transcription	Positive and negative control by regulatory proteins that act at sites close to and far from promoter Large basal transcription complex interacts with promoter. Mediator complex required.	Positive and negative control by regulatory proteins that act at sites close to the promoter Sigma interacts with promoter.
RNA processing	Extensive processing: alternative splicing of introns addition of 5' cap and 3' tail	N/A
Chromatin remodeling	Extensive packaging of DNA Chromatin must be opened for transcription to begin.	Limited packaging of DNA Remodeling not a major issue in regulating gene expression.
mRNA stability	For many genes, RNA interference limits life span or translation rate.	Minimal interference
Translation	Regulatory proteins bind to mRNAs and/or ribosome and affect translation rate.	Same !
Post-translational modification	Folding by chaperone proteins Chemical modification (glycosylation, phosphorylation) Ubiquination targets proteins for destruction by proteasome.	Folding by chaperone proteins Chemical modification (e.g., phosphorylation) may change activity.

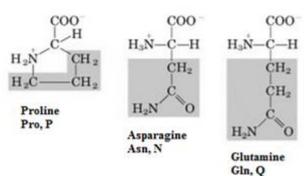
In eukaryotes, transcription and translation occur in separate compartments

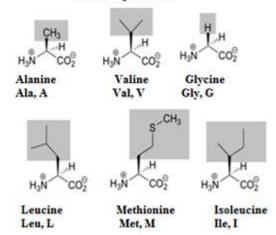
Bacteria, mRNA is polycistronic; in **Eukaryotes**, mRNA is usually monocistronic

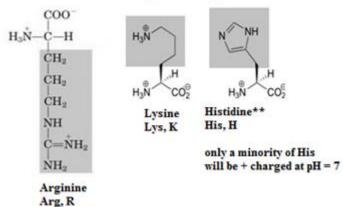

"Processing" of mRNA is **required in eukaryotes** for the maturation


In prokaryotes, mRNA matures on transcription


Amino Acid Worksheet


Negatively charged


Polar



Learn chunks of information – put the amino acids in unique groups and learn the groups!

Non-polar

Positively charged

Aromatic

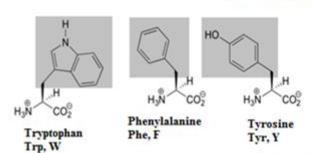


Image adapted from D. Cojocari under CCBY SA 3.0

Abstract information will stick better when you have concrete examples

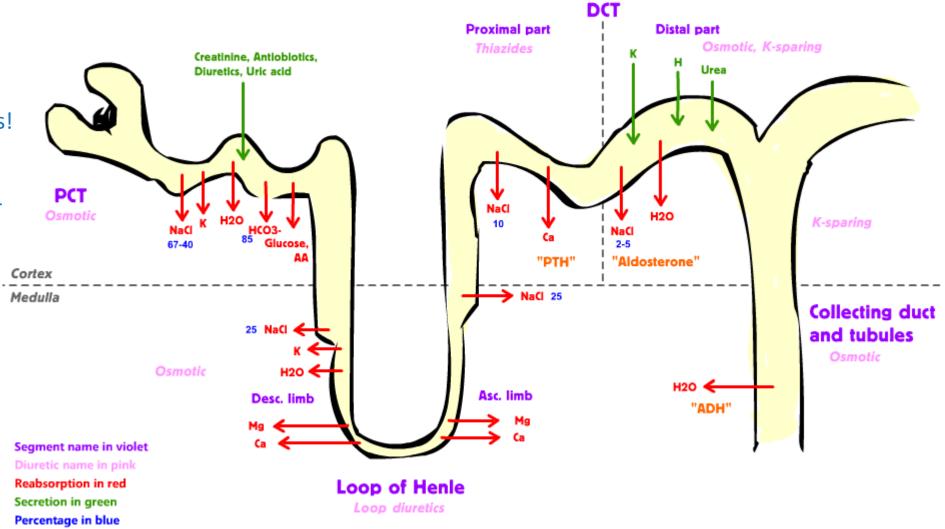
Dry information must be studied actively!

Stage	Psychosocial Obstacle	Virtue Developed	Age (expected)	Example behavior
1	Trust vs. mistrust	Норе	0-18 months	If care has been harsh or inconsistent, the infant will develop a sense of mistrust and will not have confidence in the world around them or in their abilities to influence events.
2	Autonomy vs. shame	1 W/111 I		Instead of dressing a child, a parent will have the patience to allow the child to try to dress themselves until they succeed or ask for assistance.
3	Initiative vs. guilt	Purpose	3 to 5 years	Children will plan activities, make up games, and initiate activities with others.
4	Industry vs. inferiority	Competency	5-12 years	The child's peers will gain significance and will become a major source of their self esteem. The child feels the need to win approval by demonstrating skills that are valued by others
5	Ego identity vs. Role confusion	Fidelity	12 to 18 years	Child will develop a sense of self through exploring possibilities ("experimentation") and begin to form their identity based upon the outcome of their explorations.
6	Intimacy vs. isolation	Love	18 to 40 years	Person will share themselves more intimately with others. They will explore relationships leading to long term commitments with someone other than a family member.
7	Generativity vs. stagnation	Care	40 to 65 years	Person will establish a career, settle down within a relationship, begin a family and develop a sense of being a part of the bigger picture.
8	Ego integrity vs. despair	Wisdom	65+ years	Productivity will slow, and the person will enter life as a retired person. During this time they contemplate accomplishments and are able to develop integrity if they perceive themselves as successful in life.

Stage	Psychosocial Obstacle	Virtue Developed	Age (expected)	Example behavior
1		Норе	0-18 months	If care has been harsh or inconsistent, the infant will develop a sense of mistrust and will not have confidence in the world around them or in their abilities to influence events.
2	Autonomy vs. shame	Will		Instead of dressing a child, a parent will have the patience to allow the child to try to dress themselves until they succeed or ask for assistance.
3	Initiative vs. guilt	Purpose		Children will plan activities, make up games, and initiate activities with others.
4	Industry vs. inferiority	Competency	5-12 years	
5	Ego identity vs. Role confusion	Fidelity	12 to 18 years	Child will develop a sense of self through exploring possibilities ("experimentation") and begin to form their identity based upon the outcome of their explorations.
6	Intimacy vs. isolation	Love	18 to 40 years	Person will share themselves more intimately with others. They will explore relationships leading to long term commitments with someone other than a family member.
7		Care	40 to 65 years	Person will establish a career, settle down within a relationship, begin a family and develop a sense of being a part of the bigger picture.
8	Ego integrity vs. despair		65+ years	Productivity will slow, and the person will enter life as a retired person. During this time they contemplate accomplishments and are able to develop integrity if they perceive themselves as successful in life.

Stage	Psychosocial Obstacle	Virtue Developed	Age (expected)	Example behavior
1	Trust vs. mistrust		0-18 months	If care has been harsh or inconsistent, the infant will develop a sense of mistrust and will not have confidence in the world around them or in their abilities to influence events.
2		Will	1½ to 3 years	Instead of dressing a child, a parent will have the patience to allow the child to try to dress themselves until they succeed or ask for assistance.
3	Initiative vs. guilt	Purpose	3 to 5 years	
4	Industry vs. inferiority	Competency	5-12 years	
5	Ego identity vs. Role confusion		12 to 18 years	Child will develop a sense of self through exploring possibilities ("experimentation") and begin to form their identity based upon the outcome of their explorations.
6		Love	18 to 40 years	
7	Generativity vs. stagnation	Care		Person will establish a career, settle down within a relationship, begin a family and develop a sense of being a part of the bigger picture.
8	Ego integrity vs. despair	Wisdom		Productivity will slow, and the person will enter life as a retired person. During this time they contemplate accomplishments and are able to develop integrity if they perceive themselves as successful in life.

Stage	Psychosocial Obstacle	Virtue Developed	Age (expected)	Example behavior
1	Trust vs. mistrust			
2		Will		Instead of dressing a child, a parent will have the patience to allow the child to try to dress themselves until they succeed or ask for assistance.
3	Initiative vs. guilt		3 to 5 years	
4		Competency	5-12 years	
5	Ego identity vs. Role confusion			Child will develop a sense of self through exploring possibilities ("experimentation") and begin to form their identity based upon the outcome of their explorations.
6			18 to 40 years	
7	Generativity vs. stagnation	Care		
8	Ego integrity vs. despair	Wisdom		Productivity will slow, and the person will enter life as a retired person. During this time they contemplate accomplishments and are able to develop integrity if they perceive themselves as successful in life.


Stage	Psychosocial Obstacle	Virtue Developed	Age (expected)	Example behavior
1				
2				
3				
4				
5				
6				
7				
8				

Renal System Worksheet Exercise

Use color coding to get more visual "pop" out of your diagrams!

This will help maintain your attention and aid recall.

Hormone in orange

Hormone Worksheet

Hormones are another great place in biology to use contrasts/comparisons to learn more efficiently.

What are other areas of biology where this strategy could be used?

Hormone	Secreted by	In response to	Effect	Type
Oxytocin	Posterior Pituitary	Childbirth	Uterine contraction, Emotional Bonding	Peptide
Vasopressin (ADH)	Posterior Pituitary	High plasma osmolality	Retain water, † aquaporin channels in collecting duct, DCT	Peptide
FSH	Anterior Pituitary	GnRH	9: initiate follicle growth ♂: ↑ spermatocyte development 9, ♂: maturation of germ cells	Glycoprotein
LH	Anterior Pituitary	GnRH ♀: estrogen spike from follicle just before ovulation	♀: ovulation, follicle becomes corpus luteum ♂: Leydig cells → ↑testosterone	Glycoprotein
ACTH	Anterior Pituitary	CRH, Stress	† adrenal release of corticosteroids	Peptide
TSH	Anterior Pituitary	TRH, low plasma levels of T ₄ and T ₃	↑ thyroid release of T ₄ and T ₃	Glycoprotein
Prolactin	Anterior Pituitary	Falling progesterone at end of pregnancy	Mammary gland enlargement, milk production	Peptide
Endorphin	Anterior Pituitary	Pain	Pain relief	Peptide
Growth Hormone	Anterior Pituitary	GHRH	Growth of long bones, general anabolism	Peptide
Calcitonin	Thyroid	High plasma [Ca2+]	Reduce plasma [Ca ²⁺]	Peptide
T ₄ & T ₃	Thyroid	TSH	† metabolic rate	Amino Acid Tyr, but act like steroid
Parathyroid Horm.	Parathyroid	Low plasma [Ca2+]	↑ plasma [Ca²+]	Peptide
Glucagon	Pancreas α cells	Low blood [Glucose]	↑ blood [Glucose]	Peptide
Insulin	Pancreas β cells	High blood [Glucose]	↓ blood [Glucose]	Peptide
Somatostatin	Pancreas δ cells	Various, usually high hormone levels	Suppress: GH, TSH, CCK, insulin, glucagon	Peptide
Cortisol	Adrenal Cortex	Stress	↑ [Glucose], Immune suppression	Steroid
Aldosterone	Adrendal Cortex	ACTH, ATII, low bp	Collecting Duct, DCT: reabsorb Na ⁺ , Secrete K ⁺ , water retention, ↑ bp	Steroid
Epinephrine	Adrenal Medulla	Sudden stress	Sympathetic response: ↑ heart rate, breathing, etc.	Peptide / Tyr derivative
Estrogen	Adrenal endometrial development during			Steroid
Progesterone	♀: Ovary: Corpus Luteum, ♂: Adrenal	Ovulation	Thicken, maintain endometrium in preparation for implantation	Steroid
Testosterone	♂: Leydig cells of testes, ♀: Ovaries	GnRH→LH→Testos.	Development, maintenance of secondary sex characteristics	Steroid
Norepinephrine	Adrenal Medulla	Sudden stress	Sympathic responses of fight or flight	Peptide / Tyr derivative
hCG	Placenta	Implantation	Maintains corpus luteum at start of pregnancy	Glycoprotein
GnRH	Hypothalamus	Puberty, Menses	↑ LH, FSH release	Peptide

Amino Acid Recall Exercise

Alanine	A – Ala	Non-p	CH ₃	Methionine	M – Met	Non-p	(CH ₂) ₂ SCH ₃
Cysteine	C – Cys	Polar	CH₂SH	Asparagine	N - Asn	Polar	CH ₂ C(O)NH ₂
Aspartic Acid	D – Asp	Acid	СН₂СООН	Proline	P – Pro	Non-p	(CH ₂) ₃ -own am.
Glutamic Acid	E – Glu	Acid	CH ₂ CH ₂ COOH	Glutamine	Q – Gln	Polar	(CH ₂) ₂ C(O)NH ₂
Phenylalanine	F – Phe	Non-p	CH ₂ -C ₆ H ₅	Arginine	R – Arg	Base	(CH ₂) ₃ NHC(NH ₂)NH ₂
Glycine	G – Gly	Non-p	Н	Serine	S – Ser	Polar	СН₂ОН
Histidine	H – His	Base	CH ₂ – Imidazole	Threonine	T – Thr	Polar	СНОНСН₃
Isoleucine	I – Ile	Non-p	CH(CH ₃)CH ₂ CH ₃	Valine	V – Val	Non-p	CH(CH₃)₂
Lysine	K – Lys	Base	(CH ₂) ₄ NH ₂	Tryptophan	W - Trp	Slight-p	CH ₂ – Indole
Leucine	L – Leu	Non-p	CH ₂ CH(CH ₃) ₂	Tyrosine	Y – Tyr	Polar	CH ₂ -C ₆ H ₄ -OH

Respiratory System Worksheet Exercise

Tidal volume (TV), is the amount of air inspired during normal, relaxed breathing.

Inspiratory reserve volume (IRV), is the additional air that can be forcibly inhaled after the inspiration of a normal tidal volume.

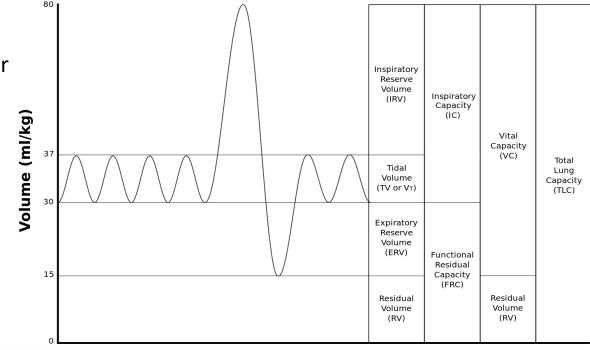
Expiratory reserve volume (ERV), is the additional air that can be forcibly exhaled after the expiration of a normal tidal volume.

Residual volume (RV), is the volume of air still remaining in the lungs after the expiratory reserve volume is exhaled.

Total lung capacity (TLC), is the maximum amount of air that can fill the lungs.

$$TLC = TV + IRV + ERV + RV$$

Vital capacity (VC), is the total amount of air that can be expired after


fully inhaling. VC = TV + IRV + ERV

Inspiratory capacity (IC), is the maximum amount of air that can

be inspired. IC = TV + IRV

Functional residual capacity (FRC), is the amount of air remaining

in the lungs after a normal expiration. FRC = RV + ERV

Build Your Biochemistry Foundation

Rule #1: Know your nomenclature. Enzymes typically have their function and/or substrate built into their name. Knowing this you will recognize names faster and connect them to their specific function.

Rule #2: Start with the big picture. Initially, draw your pathways with only the substrates and products. Repeat this until it is memorized. Then add the enzymes. Then continue to add cofactors and by-products until you have exhausted the MCAT relevant information.

Rule #3: Know the purpose of a reaction. Incorporating the larger concepts will also allow you to predict the flow of reactions in situations throughout the body.

Rule #4: *Track the flow of carbon . Track it through the intermediates of the pathway and the reactions that interconvert them.*

Build Your Biochemistry Foundation

Rule #5:

Track the flow of phosphate groups. PO_4 movement is key to energy transfer in the pathway. Catabolic pathways increase the cell's supply of ATP and other compounds with high phosphate-transfer potential. Anabolic pathways consume these compounds

Rule #6:

Track energy transfer via the flow of e⁻. Catabolic pathways are generally oxidative, and they \uparrow NADH, NADPH (nicotinamides), FADH₂ and FMNH₂ (flavins). Anabolic pathways are typically reductive, consuming reduced nucleotides, particularly NADPH.

Rule #7:

Learn the pacemaker enzymes of the pathway and the chemical signals (e.g. allosteric effectors and hormones) that control their rates first. This will allow us to see the logic of the pathway, including how its rate responds to cellular conditions.

Rule #8:

Focus on connections between pathways. This means knowing the inputs, outputs, branch points of the pathway. Regulation will be easier to master if you understand where the pathway's reactants come from and where its products go.

Biochemistry Mnemonics

Glycolysis steps

"Goodness Gracious, Fred's Father Did Go By Picking Pumpkins (to) PrEPare Pies"

Glucose / Glucose-6-P / Fructose-6-P / Fructose-1,6-diP / Dihydroxyacetone-P Glyceraldehyde-P / 1,3-Biphosphoglycerate / 3-Phosphoglycerate / 2-Phosphoglycerate (to) / Phosphoenolpyruvate [PEP] / Pyruvate 'Did', 'By' and 'Pies' tell you the first part of those three: di-, bi-, and py-. 'PrEPare' tells location of PEP in the process.

Glycolysis Enzymes

"(the) Hungry Pink Panther Pan And The Grinning Peter Pan Eat Pies."

Hexokinase / Phosphohexoisomerase / Phosphofructokinase-1 (6-phosphofructo-1 kinase) / Aldolase / Triose phosphate isomerase / Glyceraldehyde 3-phosphate dehydrogenase / Phosphoglycerate kinase / Phosphoglycerate mutase / Enolase / Pyruvate kinase

Citric acid cycle compounds

"Our City Is Kept Safe-And Sound From Malice"

Oxaloacetate, Citrate, Isocitrate, alpha-Ketoglutarate, Succinyl-CoA, Succinate, Fumarate, Malate

Biochemistry Mnemonics

Citric Acid Cycle Enzymes

"Captain America's Irate Avengers Spoke Slander For Money."

Citrate synthetase / aconitase / Isocitrate dehydrogenase / alpha ketogluturate dehydrogenase / Succinyl CoA synthetase / Succinate dehydrogenase / Fumarase / Malate Dehydrogenase

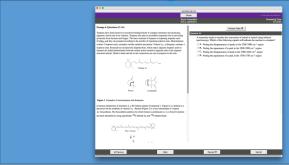
Pyruvate products of complete oxidation

"4 Nice Fun (get) 3 Coors + 1 Guinness"

Complete oxidation of pyruvate yields: 4 NADH FADH, 3 CO, 1 GTP

Have you made your own mnemonics for learning biochemistry? If so, what are they?

They should be outrageous, dirty, corny, and personal. The unavoidable areas of factual mastery on the exam will be made easier (and you will have good practice for medical school!).



Over 40,000 students have used Next Step resources for the revised MCAT.

How can we help you?

No matter your path, we got you...

Self-Study

MCAT Class

Private MCAT
Tutoring

MCAT Online Class

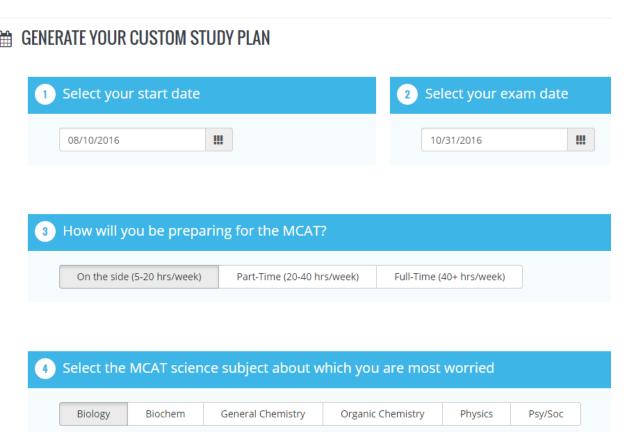
100 + hours of teaching

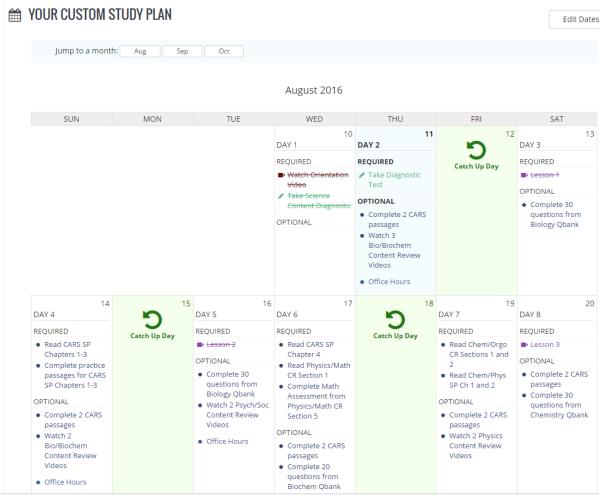
Score Guarantee

11 MCAT Books

13 Full Length MCAT Exams

Quiz Bank


10,000+ practice items


Custom Study Planning Tool

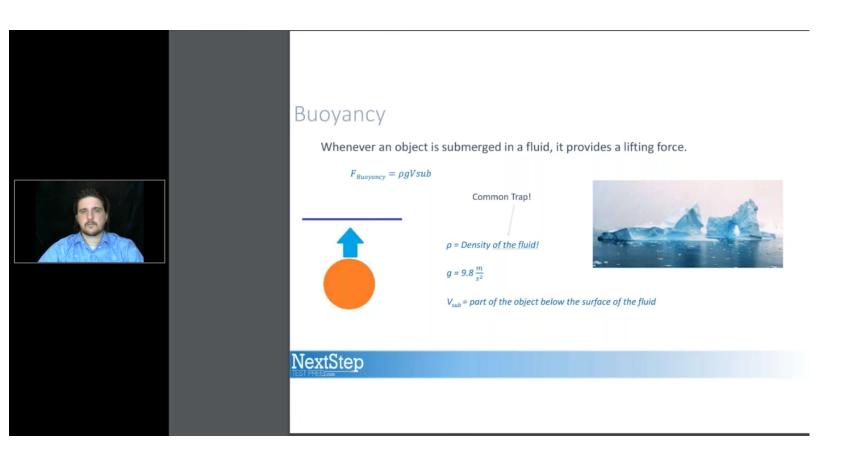
Instructor Guarantee Small group office hours

Custom study plan to show you your path

To be the best, work with the best

- Bryan: 16 years MCAT teaching experience
- Anthony: MD/PhD; 13 years MCAT experience
- Clara: 526 MCAT, 6 years experience
- Phil: 6 years experience; 98% score
- Andrew: U Chicago PhD, **523 MCAT**

Anthony



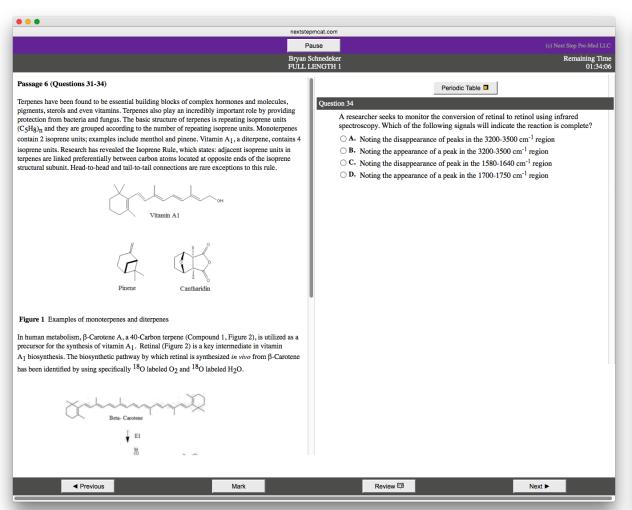
Welcome to Office Hours

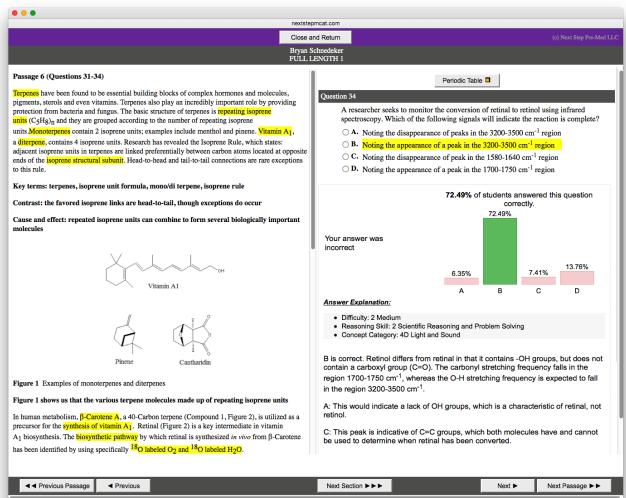
- Five 2-hour sessions each week
- Guided content and strategy review
- Test review
- Open Q&A
- All sessions are voluntary. Stay as long as you like

Best of all.... a value that can't be beat

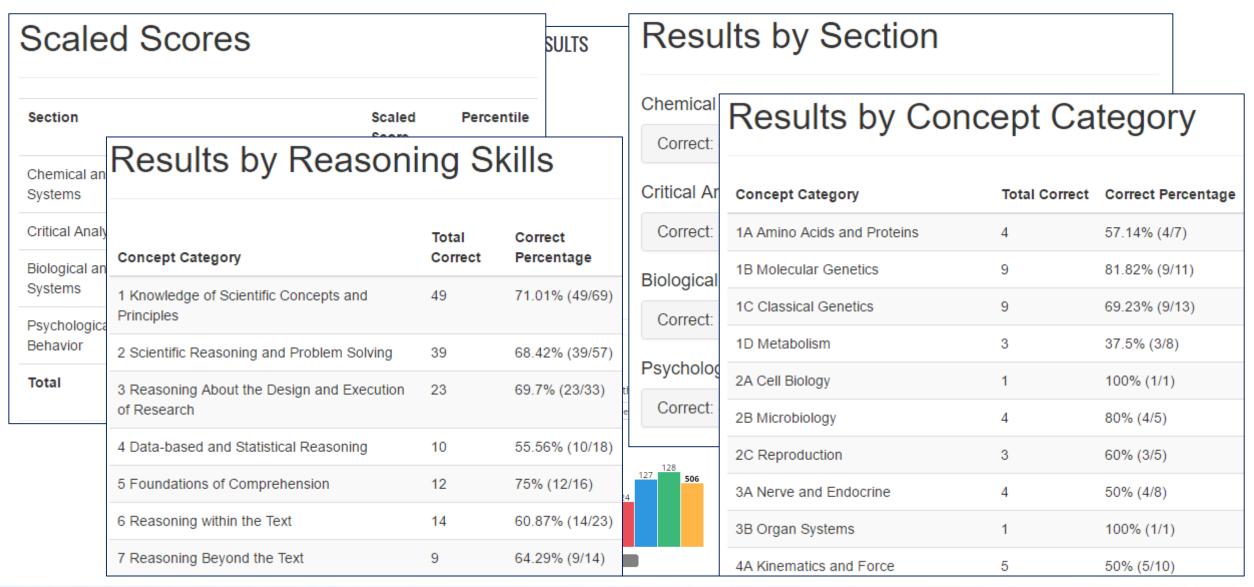
\$3,000 \$2,500 \$2,000 \$1,500 \$1,000 \$500 **\$1,299** \$2,399 \$2,299 \$0 NextStep Princeton* Kaplan*

Self-Study?


•10 Full-Length MCAT practice exams in AAMC-like format


 1,000 Question Qbank covering all areas of MCAT science in test format

•108 Verbal and MCAT Qbook (2000 Qs), plus full line of MCAT Prepbooks



Realistic MCAT Testing Platform

Comprehensive Reporting and Analytics

One on One MCAT Tutoring

Best Possible MCAT Prep

Customized Study Plans

Next Step Test	Prep
16 Hours Tutoring	\$1,999
24 Hours Tutoring	\$2,899

Superior Quality

Prince	ton	Kaplan		
60 Hours	\$9,000-	15 Hours		
Tutoring	\$18,400	Tutoring	\$3,999	

Unbeatable Value

Questions?

Like what you see? Sign up for a diagnostic account **for a free full-length** and class demo. http://nextsteptestprep.com/mcat-diagnostic/

Planning your prep? Email or call us for a free consultation with one of our academic experts.

MCAT@NextStepTestPrep.com nextsteptestprep.com 888-530-NEXT

Next Step Office Hours

Office hours are IN SESSION

We've had to step away for a minute but...

